Refine Your Search

Topic

Search Results

Standard

GENERAL REQUIREMENTS FOR APPLICATION OF VAPOR CYCLE REFRIGERATION SYSTEMS FOR AIRCRAFT

1963-05-01
HISTORICAL
ARP731
Recommendations of this ARP refer specifically to the application of closed cycle vapor cycle refrigeration systems as a source of cooling in an aircraft air conditioning system. General recommendations for an air conditioning system which may include a vapor cycle system as a cooling source are included in ARP 85, Air Conditioning Equipment, General Requirements for Subsonic Airplanes, ARP 292, Air Conditioning, Helicopters, General Requirements For, and AIR 806, Air Conditioning Design Information for Cargo and High Density Passenger Transport Airplanes, and are not included herein.
Standard

GENERAL REQUIREMENTS FOR APPLICATION OF VAPOR CYCLE REFRIGERATION SYSTEMS FOR AIRCRAFT

1973-04-15
HISTORICAL
ARP731A
Recommendations of this ARP refer specifically to the application of closed cycle vapor cycle refrigeration systems as a source of cooling in an aircraft air conditioning system. General recommendations for an air conditioning system which may include a vapor cycle system as a cooling source are included in ARP 85, Air Conditioning Equipment, General Requirements for Subsonic Airplanes, ARP 292, Air Conditioning, Helicopters, General Requirements For, and AIR 806, Air Conditioning Design Information for Cargo and High Density Passenger Transport Airplanes, and are not included herein.
Standard

General Requirements for Application of Vapor Cycle Refrigeration Systems for Aircraft

1997-10-01
HISTORICAL
ARP731B
Recommendations of this ARP refer specifically to the application of closed cycle vapor cycle refrigeration systems as a source of cooling in an aircraft air conditioning system. General recommendations for an air conditioning system which may include a vapor cycle system as a cooling source are included in ARP85, Air Conditioning Equipment, General Requirements for Subsonic Airplanes, ARP292, Air Conditioning, Helicopters, General Requirements For, and AIR806, Air Conditioning Design Information for Cargo and High Density Passenger Transport Airplanes, and are not included herein. Vapor cycle refrigeration system design recommendations are presented in this ARP in the following general areas: a SYSTEM Design Recommendations: (See Section 3) b COMPONENT Design Recommendations: (See Section 4) c Desirable Design Features: (See Section 5)
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2015-11-09
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Compartment Decompression Analysis

2010-02-12
HISTORICAL
AIR5661
This report provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
Standard

Compartment Decompression Analysis

2021-12-17
CURRENT
AIR5661A
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2019-04-11
CURRENT
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2011-06-20
HISTORICAL
AIR1168/1
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
X